

Update of research on brassica pathogens

Henrik U. Stotz; h.stotz@herts.ac.uk

School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK

Cooperative Projects

- 1. BBSRC Newton-Bhabha project lead by University of York on *Brassica* juncea pathogens *Sclerotinia sclerotiorum* and *Alternaria brassicae*
- 2. Royal Society International Exchanges with Japan on resistance genes against *Fusarium oxysporum* f. sp. *conglutinans* that affect *Leptosphaeria maculans*
- 3. BBSRC/ERA-CAPS MAQBAT project with JIC on quantitative resistance against *Pyrenopeziza brassicae* in *B. napus*

PORI project

Alternaria

Understanding the genetic and molecular basis of black spot and stem rot tolerance

- ✓ A. brassicae genome being sequenced at RRes
- ✓ Inoculations of *B. juncea* accessions Sej-2 and Pusa Jaikisan with an *A.* brassicae and two *S. sclerotiorum* (different oxalic acid levels) isolates
- ✓ A. brassicae foliar infections sampled after 1, 2 and 4 days
- ✓ S. sclerotiorum stem infections sampled after 12 h, 1 and 2 days.
- RNA extractions being optimised at UoH (115 samples)
- RNAseq analysis (69 samples)

Brassica genetics

Duplicated genes in the brassicas corresponding to *AtSNC1*

Hypotheses:

- FocBr1 confers resistance to Fusarium oxysporum f. sp. conglutinans.
- *BrSNC1*, a central regulator of temperature-dependent defence responses

Analysis of B. rapa TILLING mutants

Katherine Noel

Mutations in the P-loop (G -> R) of these TIR-NB-LRR genes alter resistance and temperature-sensitivity of resistance against *L. maculans*.

Two BON1 homologs in brassicas

CRISPR/Cas9 for BONZAI mutants

- BRACT2463: 28 plants (17 independent transgenics)
- BRACT2464: 37 plants (all independent transgenics)
- 7/54 transgenics with dwarf phenotype;
 5 currently grown to generate T₂ seeds

Partial resistance against Pyrenopeziza brassicae in oilseed rape

- ♦ Glasshouse trial of 195 accessions
- → Ten trials with 24 entries each (with 4 repeated controls)
- Each entry with 5 replicates as a randomised α-design
- ♦ Total of 1190 assessments
- Linear mixed-effects model
- Adjusted mean scores
- ➤ Histogram with 10 bins
- Slightly skewed distribution

Mapping of partial resistance against *P. brassicae*

- ✓ Associative transcriptomics (MAQBAT)
- ✓ Eight GEMs and GWAS peaks on eight chromosomes
- > Relevance of glasshouse trials to field performance?
- Connection to OREGIN projects (Scottish field trials)?

Acknowledgements

University of Hertfordshire

Katie Noel Laura Gimenez-Molina Ajisa Ali Heather Fell Dr Haitham Sayed

Prof Bruce Fitt

Rothamsted Research

Dr Kevin King

Prof Jon West

University of York

Prof Ian Bancroft

John Innes Centre

Dr Rachel Wells

Dr Chris Ridout

Niigata University, Japan

Prof Keiichi Okazaki

